Advanced High Speed Design

Zachariah Peterson Owner, Northwest Engineering Solutions Technical Consultant, Altium

May 12, 2022

Agenda

Signal Integrity in High Speed PCBs

Channel Characterization

Analysis of Transmission Line Styles

Signal Integrity Challenges in High Speed PCBs

- Most of what you do in high speed PCB design is intended to ensure signal integrity (SI).
- **Related:** Power integrity
- **Related:** Electromagnetic interference
- Determined by a few critical areas:
 - Stackup/material selection
 - Differential interconnect design and routing
 - Stable power system design
 - Noise coupling between interconnects

Digital Signal Integrity

- Signals \rightarrow Analyzed in the time domain
- Channels \rightarrow Analyzed in the time or frequency domain
- Metrics: S-parameters, impedance, inter-symbol interference (ISI), jitter, channel operating margin (COM),...

PAM4 Signaling in High-Speed Serial Technology: Test, Analysis, and Debug. Tektronix Application Note, July 2018.

Example with 56G channels on Eurocard backplane (6U)

Digital Signals and Rise Time

Loss Mechanisms

- Dielectric losses
- Copper losses (DC, skin effect, roughness)
- Plating and solder mask create additional losses
- Radiation losses

Current crowding around edges

Real Signal Integrity Metrics

- **Rough line:** W = 0.178 mm (6.996 mil)
- 50 Ω Smooth line: W = 0.180 mm (7.085 mil) → No dispersion or skin effect
- Smooth dispersion-less line: $\varepsilon = 4.171 + 0.0576i$ (@ 1 GHz)
- Commercial MoM solver says 49.99 Ohms at 7.614 mils

in this trace

Altıum.

 Signal rise time can be used to find a very large length matching tolerance (sometimes this will be several cm)

• However: this assumes perfect channels!

$\varepsilon_{resin} < \varepsilon_{fiber}$

Still skew with perfect length matching!

What are the other sources of skew/jitter?

10

 Jitter is best defined as "the sum of all skews" (Steve Corrigan, Texas Instruments)

Channel Characterization

- Determine magnitude of SI problems
- Find potential cause of SI problems
- Determine course of action to eliminate the problem
- **Example:** Layer thickness and routing should these be changed?
- Example: Prepreg vs. core order

<u>Analytical</u>

- Numerical methods:
 - 2D field solvers w/BEM or MoM
 - 3D field solvers
 - SPICE
 - IBIS

Experimental

Oscilloscope w/ eye diagram

VNA (S-parameter measurements)

- By hand with formulas or mixed formulas/tabulated data
- Spectrum analyzer + arbitrary waveform generation

- Dispersive losses → requires wideband analysis
- Probe and instrument characteristics must be known

Crosstalk

Altıum.

15

Near-end and far-end crosstalk (NEXT and FEXT)

Differential Crosstalk

Altıum.

- Differential pairs can exhibit crosstalk between each other
- For FPGAs: Plan to stagger vias (same strategy used in OpenVPX backplanes), interleave ground vias

Breakout on FPGA

Time-domain Reflection Simulation

Altıum.

• Can be calculated with same 2D solver as in crosstalk simulations

17

Eye Diagrams

Altıum.

• Identify noise and jitter \rightarrow estimate BER and SNR

More Advanced \rightarrow Impulse Response

- Identify non-causal effects in channel models
- Identify reflections on the tail-end of impulse response

Moore, C., and Healey, A. "A method for evaluating channels." 100 Gb/s Backplane and Copper Study Group, IEEE, 2011. Peterson, Z. "Causal Transmission Line Geometry Optimization for Impedance Control in PCBs." Proceedings of the IEEE Electronics Packaging Society, 2020.

Single-bit Response From Impulse Response

 Based on channel simulation: determine impulse response, use to calculate single-bit response (SBR)

Anritsu. A Guide to Making RF Measurements for Signal Integrity Applications. 2016.

- Behavioral model, faster than SPICE
- Assign model behavior by pin
- Available from manufacturers

• Models signal behavior on the output buffer in a logic circuit

Analysis of Transmission Line Styles

Impedance and Propagation

$$Z_0 = \sqrt{\frac{R + i\omega L}{G + i\omega C}}, \ \gamma = \sqrt{(R + i\omega L)(G + i\omega C)} \rightarrow v = \frac{1}{\sqrt{LC}} \text{ (lossless)}$$

Coplanar microstrip Coplanar microstrip w/	$v = \frac{c}{\sqrt{\varepsilon_{R,eff}}}$ ground	 Lower losses, copper pour allows for thinner 50 Ohm traces
Microstrip	$v = \frac{c}{\sqrt{\varepsilon_{R,eff}}}$	 Lower losses, wider traces
Symmetric stripline	$12 = \frac{C}{C}$	 Higher losses, but traces can
Asymmetric stripline	$\nu = \sqrt{\varepsilon_R}$	be much thinner than on the surface layer

You Could Do It By Hand...

Altıum.

• Transmission lines:
$$Z_0 = \sqrt{\frac{R+i\omega L}{G+i\omega C}}, \ \gamma = \sqrt{(R+i\omega L)(G+i\omega C)}$$

 $R(\omega) = R_{DC} + \sqrt{\omega}R_s$ $L(\omega) = L_{\infty} + \frac{R_s}{\sqrt{\omega}}$
 $G(\omega) = \omega C(\omega) \tan \delta(\omega)$ $C(\omega) = K_g \varepsilon_R(\omega)\varepsilon_0$

- Dielectric constant: $\varepsilon = \varepsilon_R(\omega) + i\varepsilon_I(\omega)$, $tan\delta = \frac{-\omega\varepsilon_I(\omega) \sigma_{sub}}{\omega\varepsilon_R}$
- Need causal models or data for:

Dielectric constant: $\varepsilon(\omega)$ **Copper roughness:** $K(\omega)$ **Electrical parameters:** $R(\omega), L(\omega)$

Zhang, J., et al. "Causal RLGC(f) Models for Transmission Lines From Measured S-Parameters," IEEE Transactions on Electromagnetic Compatibility, 52(1), pp.189-198 (2009).

Transmission Line Transfer Function

Altıum.

• General definition:
$$H(f) = \frac{V_L}{V_S} = \frac{Z_L}{AZ_L + B + CZ_SZ_L + DZ_S}$$

	$\cosh(\gamma l)$	$Z_0 \sinh(\gamma l)$
$\begin{bmatrix} A & B \\ C & D \end{bmatrix} =$	$\left[\begin{array}{c} \sinh(\gamma l) \\ \overline{Z_0} \end{array} \right]$	$\cosh(\gamma l)$

• Three cases that can be derived by hand from ABCD parameters:

$$Z_S = 0$$
, load terminated with Z_T : $H(s) = \frac{1}{\cosh \gamma l(1 + Z_0(\frac{1 + sZ_TC_L}{Z_T}) \tanh \gamma l)}$

$$Z_S = Z_0$$
, load terminated with Z_T : $H(s) = \frac{e^{-\gamma l}}{1 + Z_0 \left(\frac{1 + sZ_T C_L}{Z_T}\right)}$

Unterminated
$$Z_S = 0$$
, $Z_L = \frac{1}{sC_L}$: $H(s) = \frac{1}{\cosh \gamma l(1 + Z_0 sC_L \tanh \gamma l)}$

- Approximate the square root: $\gamma = \sqrt{(R + i\omega L)(G + i\omega C)}$
- Take the real part of the result and break into conductor + dielectric

 $\alpha_{total} = \alpha_{conductor} + \alpha_{dielectric}$

 $\alpha_{dielectric} = 4.34(\omega CZ_0 \tan \delta)$ in dB/length

$$\alpha_{conductor} = 4.34 \left(\frac{R_{DC} + \sqrt{\omega}K(\omega)R_s}{Z_0} \right)$$
 in dB/length,

4.12 mil dielectric thickness, unmodified Dk = 4.17/Df = 0.014

	$lpha_{dielectric}$	$lpha_{conductor}$ (smooth)	α _{conductor} (rough, Hammerstad)	$lpha_{conductor}$ (rough, Cannonball-Huray, $a=2~\mu m, H=5~\mu m$)
Microstrip, 1 GHz	~0.059 dB/inch	~0.053 dB/inch	~0.080 dB/inch	~0.077 dB/inch
Microstrip, 10 GHz	~0.585 dB/inch	~0.14 dB/inch	~0.22 dB/inch	~0.25 dB/inch
Stripline, 1 GHz	~0.067 dB/inch	~0.13 dB/inch	~0.21 dB/inch	~0.19 dB/inch
Stripline, 10 GHz	~0.677 dB/inch	~0.35 dB/inch	~0.53 dB/inch	~0.63 dB/inch

Differential Pair Routing Tips

- Antipad shape and size creates parasitic capacitance
- Place with stitching vias to control parasitics

Altıum.

• A simple model for vias and antipads

28

• Add length matching sections near inhomogeneity if possible

Frequency	FCC Class A	FCC Class B
<1.7 MHz*	40 uA	10 uA
1.7 - 30 MHz*	120 uA	10 uA
30 MHz**	24 uA	8 uA
50 MHz**	14 uA	5 uA
100 MHz**	11 uA	3.5 uA

* Based on Conducted Emission Limits

** Based on Radiated Emission Limits

Via Stubs

Altıum.

Low $f \quad Z_{via} \approx i\omega L + R_{DC} + \sqrt{\omega}(1+i)K(\omega)R_{skin}$

High f: Treat as a resonator (next slide), use input impedance

0.1 mm stub length: okay for signals up to roughly 150 GHz (typical FR4 substrate)

Via Stubs

• Stubs create destructive interference at quarter wavelength resonances:

Alternative Strategy

Altıum.

• Stubs create destructive interference at quarter wavelength resonances:

Stay tuned for our Altium Designer demonstration.